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Summary. The knowledge of phase equilibria and thermodynamic properties in the ternary Cu–Sn–Ti

system is of technical importance for active brazing filler metals. Thermodynamic descriptions of the

binary systems Cu–Ti and Cu–Sn are well established. In this work a self-consistent thermodynamic

description of the Sn–Ti binary system has been obtained by fitting critically reviewed thermochemical

and phase diagram data. The newest and most consistent lattice stability has been used, and all the

intermetallic phases and recent experimental information have been taken into account. The equili-

brium measurement on the Sn-rich side and more experimental thermodynamic properties are required

for a better thermodynamic description of this system. The evaluated thermodynamic description of the

Sn–Ti binary system will serve as part of the thermodynamic database for Cu–Sn–Ti brazing alloys.

Keywords. Thermodynamics; Phase diagrams; Sn–Ti binary system; Tin compounds; Phase

transformations.

Introduction

The Cu–Sn–Ti system is of technical importance for active brazing filler metals
[1], but no complete phase diagram can be found in literatures up to now. However,
this would be necessary for technical applications. Thermodynamic descriptions of
the binary systems Cu–Ti and Cu–Sn have already been established [2–4]. For the
Sn–Ti binary system, Murray [5] made a comprehensive review and assessment in
1987. However, a stable phase, Sn3Ti2, was found and recently confirmed in the
Sn–Ti binary system [6, 7]. Furthermore, the lattice stability of Sn was recently
updated by the Scientific Group Thermodata Europe (SGTE). Therefore, in the
present work a thermodynamic reassessment of the Sn–Ti system has been con-
ducted based on available experimental data in literature.
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Assessment of Experimental Data

Phase Equilibrium and Crystallographic Data

Although the Ti-rich side is studied by different techniques [8–12], it can be
concluded that �-Ti transforms congruently into �-Ti at about 6.7 at.% Sn and
1115 K [10]. Concerning the peritectoid reaction �-Tiþ SnTi3,�-Ti, the reported
invariant reaction temperatures range from 1137 to 1213 K [8, 12, 13]. The value
1163 K, obtained from the thermal analysis and the metallographic studies [12], is
preferred and used in the present work. In Refs. [10, 11] the incoherent precipita-
tion of SnTi3 in �-Ti was probably suppressed, so that the metastable extension of
the �-Ti=�-Ti boundary may have been measured. Most of them agreed in placing
the homogeneity range of SnTi3 at about 23 to 25 at.% Sn [8, 10–12].

The reactions in the range 25–50 at.% Sn were first investigated by incipient
melting studies [14]. The congruent melting temperatures of SnTi3 and Sn5Ti6
were determined to be 1936� 20 K and 1767� 20 K, respectively [14]. Similarly,
the eutectic reaction L,�-TiþSnTi3 was located at 1880� 20 K [14], which
complies with the 1863 K from the metallographic studies [10]. The reaction
SnTi3þ L, SnTi2 was located at 1825 K in Ref. [14]. However, the reactions
SnTi2þ L, Sn3Ti5 and L, Sn3Ti5þ�-Sn5Ti6 were investigated using as-cast
and slowly-cooled specimens [14], the temperatures of these reactions are thus
only rough estimates.

Eremenko [15] determined the Sn-rich liquidus and the types of the invariant
reactions at the Sn-rich side using the differential thermal analysis (DTA) method.
It appeared that the crystallization of all Sn–Ti alloys is completely generated by
an eutectic transformation 1–2 K below the melting temperature of pure Sn.
Furthermore, the solubility of Ti in solid Sn was found to be extremely low.
Though its nature has not yet been established, an invariant reaction taking place
at �1063 K in alloys containing 61.7–81.7 at.% Sn was also found in Ref. [15].
Another equilibrium method was used to measure the solubility of Ti in liquid Sn
in Ref. [16]. The intermetallic phase Sn5Ti6 was brought in equilibrium with liquid
Sn, annealed at different temperatures, and the solubility of Ti in liquid Sn was
measured at each temperature. The determined solubility of Ti was significantly
lower than the data in Ref. [15]. It is obvious that the measurement at a fixed
composition is more suitable for flat phase boundaries, whereas the one at a fixed
temperature applies better for steep phase boundaries. Therefore, the liquidus data
of Ref. [16] may be more reliable than the data measured in Ref. [15]. This is also
confirmed by a third set of data from Refs. [17, 18], during the process of optimi-
zation there were continual conflicts between the liquidus data [15] and thermo-
dynamic data measured by authors of Refs. [17, 18]. Therefore, only Darby’s
liquidus data [16] have been used in the present optimization.

Recently, the phase equilibria of the Sn–Ti system were studied with isother-
mal annealing of powder and melted alloy samples in the range of 29–88 at.% Sn
and 623–1373 K [6]. The experiments show that there is a new intermetallic phase
Sn3Ti2, stable up to at least 973 K and probably not more than 1043 K. Its space
group and lattice constants have been investigated by X-ray diffraction and
Mössbauer spectroscopy [7]. The hexagonal �-Sn5Ti6 phase was observed in the
samples annealed at 943 K and higher temperatures [6, 19]. Hence, the temperature
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of the polymorphic transformation in Sn5Ti6 should be lower than 943 K. There-
fore, the exothermic reaction at 1063 K tentatively identified in Ref. [15] was
proposed as the invariant reaction of Lþ �-Sn5Ti6, Sn3Ti2.

There are four solution phases and six stable intermetallic compounds in the
Sn–Ti system, liquid, �-Ti, �-Ti, �-Sn, Sn3Ti2, �-Sn5Ti6, �-Sn5Ti6, Sn3Ti5, SnTi2,
and SnTi3. The crystallographic data of all these phases are summarized in Table 1.

Thermodynamic Data

Enthalpies of mixing in the liquid state at 2000 K were measured over the compo-
sition range 50–100 at.% Sn [20]. The enthalpies of dissolution of Ti in Sn–Ti
melts of composition 91–100 at.% Sn were measured at 1240–1687 K directly in
a high-temperature isoperibolic calorimeter [17]. The partial enthalpies of Ti in
liquid Sn measured at 1173 K in high dilution [21] provide strongly positive values,
which is contrary to other data [17, 20]. Therefore, the data of Ref. [21] were not
included in this assessment.

Ti activities in liquid Sn were measured by using nitrogen-nitride phase equilib-
ria [22] and an EMF cell technique [18]. As for the heat formation of intermetallic
compounds, there is a discrepancy between predicted and experimental data, which
can be seen in Table 2. The first measurements were performed by calorimetric
methods [23] and it was stated that the data need to be regarded as estimates. Later,
the enthalpies of formation of intermetallic compounds were calculated using
the semi-empirical model of Miedema [24], which did not reproduce the former
experimental data [23]. Recently, the standard enthalpies of �-Sn5Ti6 formation

Table 1. Crystal Structures of the stable phases of the Sn–Ti system

Phase Strukturbericht

designation

Composition

Sn at.%

Prototype Space group References

�-Ti A2 0–7.5 W Im3m [5]

�-Ti A3 0–17 Mg P63=mmc [5]

SnTi3 D019 23–25 Ni3Sn P63=mmc [31]

SnTi2 B82 32.7–35.9 InNi2 P63=mmc [14]

Sn3Ti5 D88 37.5 Mn5Si3 P63=mcm [32]

�-Sn5Ti6 – 45.5 – P63=mmc [19]

�-Sn5Ti6 – 45.5 Nb6Sn5 Immm [19]

Sn3Ti2 – 60 – Cmca [6, 7]

(Sn) A5 99.98–100 �-Sn I41=amd [5]

Table 2. Comparison between enthalpies of formation of intermetallic phases

Refs. Technique �H0
f (kJ=mol of atoms)

Sn3Ti2 Sn5Ti6-L Sn3Ti5 SnTi2 SnTi3

[23] Experiment �115 �94 �92 �50

[24] Theoretical prediction �52 �50 �47 �38

[25] Experiment �43.4 � 1.4

This work Calculation �36.8 �40.3 �37.8 �36.9 �35.2
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were measured by direct synthesis calorimetry [25]. This data is closer to the
predicted data of Ref. [24]. So, both of them were used. Enthalpies of formation
were also determined again recently in Ref. [26]. However, they are very dif-
ferent from all other data [23–25], therefore, they were not included in the present
optimization.

Thermodynamic Modeling

In order to match the pre-existing database and their crystal structures, the detailed
expressions for the phases’ Gibbs energy are proposed below.

Solution Phases: liquid, bcc, hcp, and bct

The liquid, bcc, hcp, and bct phases are treated as substitutional solutions as
(Sn,Ti):(Va)n with assumption that Sn and Ti can completely substitute each other
in the model, Va means vacancies, and n is a constant dependent on the crystal
structure. The Gibbs energy (in J=mol) is expressed by Eq. (1) where 0G

�
i is the

molar Gibbs energy of the pure element i with the structure �, which is taken from
SGTE Pure elements database V.4., which is based on the original unary database
established by Dinsdale [27].

G�
m ¼ xSn

0G
�
Sn þ xTi

0G
�
Ti þ RTðxSn ln xSn þ xTi ln xTiÞ þ exG�

m ð1Þ
It should be mentioned that the new stability of Sn in hcp was used in the

present work as consistent with other solder alloy systems, such as the Sn–Ag–Cu
system [28]. Here, xi is the molar fraction of element i in the � phase. exG�

m is the
excess Gibbs energy, expressed in Redlich-Kister polynomials (Eq. (2)), where
jL

�
Sn;Ti is the jth binary interaction parameter expressed as aþ bT , and a and b

are model parameters to be evaluated from experimental data.

exG�
m ¼ xSnxTi

Xn

j¼0

jL
�
Sn;TiðxSn � xTiÞj ð2Þ

They have different values for different phases, although the same letters are
used throughout the text.

Intermetallic Phases

Due to their narrow solubility range and limited experimental data, the compounds
Sn3Ti2, �-Sn5Ti6, �-Sn5Ti6, Sn3Ti5, and SnTi2 are described as stoichiometric
phases. Because no data of the heat capacities of the compounds are available,
the Gibbs energies (in J=mol) of the different phases are approximated on the base
of the Neumann-Kopp rule (Eq. (3)), where GSER

Sn and GSER
Ti are the Gibbs energies

of pure Sn and Ti at 298.15 K and 101325 Pa, i.e. the so-called Standard Element
Reference (SER).

GSnmTin
m ¼ aþ bT þ mGSER

Sn þ nGSER
Ti ð3Þ

According to the model of other phases with the same crystal structure, for
example Ni3Sn in Ref. [29], the compound energy formalism (CEF) with two

1924 C. Liu et al.



sublattices, (Sn%,Ti):(Sn,Ti%)3, is used to describe the compound D019–SnTi3, in
which % means the main element in the sublattice. Ti can substitute part of Sn in
the first sublattice and in the second sublattice vice versa. The Gibbs energy
(in J=mol) is expressed as shown by Eq. (4) where y

1=2

Sn=Ti is the molar fraction of
Sn or Ti in the first or the second sublattice, respectively.

GSnTi3
m ¼ y1

Sny
2
SnG

0
SnSn3

þ y1
Sny

2
TiG

0
SnTi3

þ y1
Tiy

2
SnG

0
TiSn3

þ y1
Tiy

2
TiG

0
TiTi3

þ RT ½ðy1
Sn ln y1

Sn þ y1
Ti ln y1

TiÞ þ 3ðy2
Sn ln y2

Sn þ y2
Ti ln y2

TiÞ� þ Gex ð4Þ

G0
SnSn3

and G0
TiTi3

are assumed identical with the Gibbs energies of 4 mole of
pure Sn or Ti occupying all the lattice sites of the compound SnTi3, G0

TiSn3
is the

Gibbs energy of the hypothetical stoichiometric phase TiSn3, and Gex is the excess
Gibbs energy term (Eq. (5)).

Gex ¼ y1
Sny

1
Tiðy2

SnLSn;Ti:Sn þ y2
TiLSn;Ti:TiÞ þ y2

Sny
2
Tiðy1

SnLSn:Sn;Ti þ y1
TiLTi:Sn;TiÞ ð5Þ

The parameters Li;j:k and Lk:i;k account for interaction energies between the
atoms on one sublattice for a given occupancy of the other, and can be described
by the Redlich-Kister polynomial with temperature dependent coefficients as
shown by Eq. (6).

Li;j:k ¼
Xz

n¼0;1...

ðan þ bnTÞðYi � YjÞn ð6Þ

The coefficients a and b in Eqs. (2), (3), and (6) were derived in the present
optimization.

Optimization and Discussion

The model parameters were evaluated using the Parrot module of the Thermo-Calc
software [30], which is able to deal with various kinds of experimental data in one
operation. It works by minimizing the square sum of the differences between
experimental data and computed values. During the assessment procedure, all
the experimental data were first critically reviewed and selected as described
above. Each data point was then assigned a certain weight. These weights were
chosen and adjusted systematically according to data uncertainties from the origi-
nal publications plus the modeler’s judgment, until most of the experimental data
were accounted for within the estimated uncertainty limits.

Two steps were taken to optimize the parameters. At first, all the compounds
were treated as line compounds in constructing the framework of the phase dia-
gram. The input data for optimization calculations were: (i) the heat of mixing data
for the liquid [20], (ii) the �-Ti=�-Ti phase boundaries [11], (iii) the Sn-rich
liquidus [16], (iv) the enthalpies of formation of intermetallic compounds [24,
25], and (v) the three-phase invariant reactions and congruent transformation points
[6, 8, 11, 14]. Then, in combination with the solubility data of SnTi3 [10], the CEF
model was used to describe the solubility range of the SnTi3 phase. G0

SnSn3
and

G0
TiTi3

are defined as G0
SnSn3

¼ 4GSER
Sn þ 10 and G0

TiTi3
¼ 4GSER

Ti þ 5000. G0
SnTi3

is the
Gibbs energy of the ideal stoichiometric compound SnTi3, whose initial value is
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taken from the first step of optimization where D019–SnTi3 was treated as a stoi-
chiometric compound. G0

TiSn3
takes G0

SnSn3
þ G0

TiTi3
� G0

SnTi3
as its initial value.

After the final optimization with all the parameters and all the experimental data,
a complete and self-consistent thermodynamic description of the Sn–Ti binary
system was thus obtained, which is listed in Appendix 1.

Fig. 1. Comparison between the calculated Sn–Ti phase diagram and the experimental observations

Fig. 2. Comparison between the Ti-rich calculated phase diagram and experimental data
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Comparisons between the calculated phase diagram and the experimental
observations are shown in Figs. 1 and 2. Most of the experimental data agree well
with the calculations, and the congruent transformation �-Ti,�-Ti and peritectoid

Fig. 3. Comparison between the calculated heat of mixing of the liquid at 2000 K and the experi-

mental data of Refs. [17] and [20]

Fig. 4. Comparison between the calculated standard enthalpy of formation with the theoretical

prediction using the Miedema model [24] and experimental data of Ref. [25]
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reaction �-Tiþ SnTi3,�-Ti were also successfully reproduced in this work.
In Fig. 3, the calculated heat of mixing in the liquid at 2000 K from the present
work is compared with the experimental data measured by Esin [20] in the range
50–100 at.% Sn and Nikolaenko [17] in the range 91–100 at.% Sn. The diagram for
heat of mixing also confirms that the minimum integral enthalpies of formation of
liquid binary Sn–Ti alloys are not in the experimental range of composition of
50–100 at.% Sn as mentioned by Esin [20]. As shown in Fig. 4, the enthalpy
of formation calculated from the present work is not only in good agreement
with the experimental data of Meschel et al. [25], but it also reproduces the
tendency of the theoretical prediction from de Boer et al. [24].

Further experimental data are needed for a complete description of the Sn–Ti
system. This work should focus on the determination of the liquidus line on the
Sn-rich side. Also the homogeneity ranges of the intermetallic phases SnTi3 and
SnTi2 should be determined with higher accuracy as a basis for a better thermo-
dynamic description of the system. This is especially important to model the solu-
bility of a third element, such as Cu, so that the binary assessment can serve as part
of the thermodynamic database for Cu–Sn–Ti brazing alloys.
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Appendix. Thermodynamic description of the Sn–Ti
binary system (all values are in J/mol)

Liquid constituents: (Sn,Ti)

0L
liq
Sn;Ti ¼ �88774:03 þ 6:5228 T

1L
liq
Sn;Ti ¼ 54178:12 ��2:4780 T

BCC_A2 �-Ti constituents: (Sn,Ti)1(Va)3

0LbccSn;Ti:Va ¼ 90236:81 þ 10:3708 T

1LbccSn;Ti:Va ¼ þ73071:57

HCP_A3 �-Ti constituents: (Sn,Ti)1(Va)0.5

0L
hcp
Sn;Ti:Va ¼ �101017:53 þ 6:81T

1L
hcp
Sn;Ti:Va ¼ þ50749:95 þ 0:1021 T

BCT_A5 �-Sn constituents: (Sn,Ti)

0LbctSn;Ti ¼ 50000

Sn3Ti2 constituents: (Sn)3(Ti)2

0GSn3Ti2
Sn;Ti � 3 �GSER

Sn � 2 �GSER
Ti ¼ �183828:39 þ 37:2757 T
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�-Sn5Ti6 constituents: (Sn)5(Ti)6

0GSn5Ti6
Sn;Ti � 5 �GSER

Sn � 6 �GSER
Ti ¼ �383214:29 � 23:0885 T

�-Sn5Ti6 constituents: (Sn)5(Ti)6

0GSn5Ti6 L
Sn;Ti � 5 �GSER

Sn � 6 �GSER
Ti ¼ �442750:46 þ 39:4484T

D88–Sn3Ti5 constituents: (Sn)3(Ti)5

0GD88�Sn3Ti5
Sn;Ti � 3 �GSER

Sn � 5 �GSER
Ti ¼ �302460:91 þ 0:7762T

B82–SnTi2 constituents: (Sn)(Ti)2

0GB82�SnTi2
Sn;Ti � GSER

Sn � 2 �GSER
Ti ¼ �110610:33

D019–SnTi3 constituents: (Sn,Ti)(Sn,Ti)3

0GD019�SnTi3
Sn:Sn ¼ 4 �GSER

Sn þ 10

0GD019�SnTi3
Ti:Ti ¼ 4 �GSER

Ti þ 5000

0GD019�SnTi3
Sn:Ti � GSER

Sn � 3 �GSER
Ti ¼ �140665:42 þ 2:3555T

0GD019�SnTi3
Ti:Sn � GSER

Ti � 3 �GSER
Sn ¼ þ150416:86 � 2:0225T

0LD019�SnTi3
Sn;Ti:Sn ¼ 117921:13 � 70:7927 T

GSER
Sn ¼ 250:00 K<T<505:08 K : �5855:135 þ 65:443315T

� 15:961T lnðTÞ � 0:0188702 T2 þ 3:121167�10�6 T3 � 61960T�1

505:08 K<T<800:00 K : þ2524:724 þ 4:005269T � 8:2590486T lnðTÞ
� 0:016814429 T2 þ 2:623131�106 T3 � 1081244 T�1 � 1:2307�1025 T�9

800:00 K<T<3000:00 K : �8256:959 þ 138:99688T

� 28:4512 T lnðTÞ � 1:2307�1025 T�9

G
Liquid
Sn ¼ 100:00 K<T<505:08 K : þ7103:092 � 14:087767T þ GSER

Sn þ 1:47031�10�18 T7

505:08 K<T<800:00 K : þ6971:586 � 13:814383 T þ GSER
Sn þ 1:2307�1025 T�9

800:00 K<T<3000:00 K : �1285:372 þ 125:182498 T � 28:4512 T lnðTÞ
Gbcc

Sn ¼ 4400:0 � 6:00T þ GSER
Sn

G
hcp
Sn ¼ 3900 � 7:646T þ GSER

Sn

GSER
Ti ¼ 298:15 K<T<900:00 K : �8059:921 þ 133:615208 T � 23:9933T lnðTÞ

� 0:004777975 T2 þ 1:06716�10�7 T3 þ 72636T�1

900:00 K<T<1155:00 K : �7811:815 þ 132:988068 T � 23:9887 T lnðTÞ
� 0:0042033 T2 � 9:0876�10�8 T3 þ 42680T�1

1155:00 K<T<1941:00 K : þ908:837 þ 66:976538T � 14:9466T lnðTÞ
� 0:0081465 T2 þ 2:02715�10�7 T3 � 1477660 T�1

1941:00 K<T<4000:00 K : �124526:786 þ 638:806871T � 87:2182461 T lnðTÞ
þ 0:008204849 T2 � 3:04747�10�7 T3 þ 36699805T�1

G
Liquid
Ti ¼ 298:15 K<T<1300:00 K : þ12194:415 � 6:980938 T þ GSER

Ti

1330:00 K<T<1941:00 K : þ368610:36 � 2620:99904T þ 357:005867T lnðTÞ
� 0:155262855 T2 þ 1:2254402�10�5 T3 � 65556856 T�1 þ GSER

Ti

1941:00 K<T<6000:00 K : þ104639:72 � 340:070171T þ 40:9282461 T lnðTÞ
� 0:02200832T2 þ 1:228863�10�6 T3 þ 1400501T�1
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Gbcc
Ti ¼ 298:15 K<T<1155:00 K : �1272:064 þ 134:71418T � 25:5768T lnðTÞ

� 6:63845�10�4 T2 � 2:78803�10�7 T3 þ 7208T�1

1155:00 K<T<1941:00 K : þ6667:385 þ 105:366379T � 22:3771T lnðTÞ
þ 0:00121707T2 � 8:4534�10�7 T3 � 2002750 T�1

1941:00 K<T<4000:00 K : þ26483:26 � 182:426471T þ 19:0900905 T lnðTÞ
� 0:02200832T2 þ 1:228863�10�6 T3 þ 1400501 T�1
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